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There is increasing evidence to support the inability of CD4 cell count monitoring to predict virological failure
in human immunodeficiency virus–infected individuals receiving antiretroviral therapy. There is renewed
interest in improving access to viral load monitoring in resource-constrained regions to monitor adherence
to treatment and to switch therapy. The field is rapidly changing as new technology platforms are made
available for evaluation. This article presents an up to date summary of the assays available for viral load
monitoring and suggests approaches for their implementation.

Improved access to antiretroviral therapy (ART)

through price reductions of patented medications,

availability of generic drugs, and significant increases

in donor funding have resulted in a dramatic expansion

of the number of human immunodeficiency virus

(HIV)–infected individuals receiving treatment in low-

and middle-income countries. Recent global estimates

suggest that one-third of the 7.1 million individuals

who need ART are accessing it in developing countries

[1]. The simplified public health approach that has been

used to provide large-scale drug delivery has been found

in limited studies to be cost effective [2]. The focus has

thus shifted toward evaluating the feasibility and access

to laboratory assays, such as measurement of CD4 cell

count and viral load, for these regions to support HIV

clinical management programs. One of these laboratory

tools, the plasma viral load monitoring assay, has be-
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come the standard of care for monitoring patients re-

ceiving ART in the developed world [3–5], with treat-

ment failure being defined largely on the basis of failure

to suppress viral load or occurrence of viral rebound

after initial suppression.

Much data are available that support the use of viral

load testing for monitoring response to therapy, deter-

mining prognosis [4, 6, 7], and identifying early viro-

logical failure necessitating treatment switches. World

Health Organization (WHO) guidelines published in

2004 for ART in resource-poor environments suggested

that CD4 cell count measurement was desirable for

initiation of treatment but that the use of viral load for

monitoring was optional [8]. These guidelines have

been revised to suggest that increased access to viro-

logical testing is highly desirable, particularly for clinical

decision making related to switching drug regimens [8].

The appropriate threshold for switching has not been

determined. Although some organizations, including

the WHO, have suggested that an HIV RNA load of

10,000 copies/mL is a reasonable threshold for rec-

ommending a change in ART [9, 10], this threshold is

based on a limited data set that primarily evaluates

short-term clinical outcomes. It is clear that, at this

level of viral replication, failing ART regimens select for

resistance mutations on a cumulative basis. As a result

of the original WHO guidelines, the most common

method for monitoring treatment response in resource-

constrained environments is measurement of CD4 cell

count. Recent data from Uganda and South Africa
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have confirmed that CD4 cell count monitoring does not ac-

curately identify patients with virological failure [2, 11, 12].

Although CD4 cell count measurements (absolute CD4 cell

counts, change in CD4 cell counts, and CD4 cell count slopes)

were shown to significantly correlate with HIV load measure-

ments in cohort analyses, they were found to have a poor

predictive value in identifying virologic failure in individual

patients [2]. With use of WHO guidelines and definitions for

treatment failure, individuals with decreases in CD4 cell count

and undetectable viral loads would have changed treatment

unnecessarily [2]. The argument raised by Badri et al [2] that

monitoring of CD4 cell count is an inadequate alternative to

monitoring of viral load and cannot be used to substitute for

viral load monitoring is receiving steadily growing support.

Recent studies published from South Africa demonstrated

the importance of using viral load monitoring in conjunction

with targeted adherence monitoring for conserving the first-

line drug regimen [13]. This is particularly important when the

second-line regimen costs significantly more than first-line

treatment and when available regimens are limited. With use

of a combination of viral load and CD4 cell count laboratory

monitoring and counselor-driven adherence interventions, it

has been shown that 195% of individuals commencing ART

can continue to receive a first-line treatment regimen over a

3-year period. In addition, HIV drug resistance data from sev-

eral developing countries have indicated that more-complex

resistance profiles may arise when treatment switches are based

on clinical and immunological criteria alone [14]. Other ap-

plications cited for the viral load assay include a tool for mon-

itoring treatment adherence, making diagnoses during early

infancy, and conducting sentinel surveillance [15]. Because of

the significant differences in laboratory capacity among differ-

ent countries and among regions in a country, a single labo-

ratory solution for viral load monitoring is not feasible. The

scope of this discussion will include both nucleic and non-

nucleic acid–based testing approaches for measuring HIV load.

AVAILABLE HIV QUANTIFICATION ASSAYS

The first descriptions of viral load monitoring were based on

the quantification of plasma HIV RNA levels with use of a

variety of nucleic acid–based amplification techniques [6]. Nu-

cleic acid–based amplification assays are the mainstay of viral

load monitoring in high-income countries. Assay design is

complicated by the high level of genetic heterogeneity char-

acteristic of HIV-1 and the emergence of recombinant strains

[16, 17]. This diversity remains an ongoing challenge for assay

development and necessitates constant molecular surveillance.

There are also differences between assays across suppliers and

in different assays provided by the same supplier, and this

should be taken into account when analyzing research or pa-

tient data. Disadvantages include the need for relatively so-

phisticated laboratory expertise and appropriate laboratory fa-

cilities and space to avoid contamination.

NUCLEIC ACID AMPLIFICATION ASSAYS

Nucleic acid amplification tests are divided into those that are

based on target amplification, which form the bulk of available

assays, and those that are based on signal amplification. De-

tection is done using either end point polymerase chain reaction

(PCR) or real-time PCR; the latter simply means that detection

is done as the product accumulates during the exponential

phase of the reaction. The advantages of nucleic acid testing

approaches are that many of these assays have been well vali-

dated and are available in quality-assured kits, and there is

clinician familiarity with interpretation of results. Assays vary

considerably by sample preparation, amplification and detec-

tion methodology, region of the genome targeted, and dynamic

range. Assays are summarized in Table 1.

At present, there are several commercially available Food and

Drug Administration–licensed assays for viral load testing:

Roche Amplicor Monitor (version 1.5), which uses 3 different

formats (manual, manual extraction, and comprehensive

bioanalytical system [COBAS] amplification and detection);

COBAS Ampliprep/COBAS Amplicor (Roche Molecular Sys-

tems) [35, 48, 49]; the bioMérieux NucliSENS HIV-1 QT assay

(bioMérieux) [48, 49]; and the Versant HIV-1 RNA assay (ver-

sion 3.0; bDNA; Siemens) [50, 51]. Assays such as the Abbott

LCx assay have been largely discontinued [52] and replaced

with the Abbott HIV-1 RealTime assay (Abbott Diagnostics).

The Roche (version 1.5) assay is a reverse-transcription PCR–

based, target amplification assay targeting the gag p24 region

of the genome, and improved performance of this assay across

subtypes has been demonstrated over the original version (1.0)

of the assay. The Roche assay may be conducted in a manual

format or on the semi-automated COBAS Amplicor with au-

tomated amplification and detection [47] or via an automated

extraction on the COBAS Ampliprep as a front end to the

COBAS Amplicor. The NucliSENS HIV-1 QT assay is based on

the nucleic acid sequence–based amplification [49, 53], which

is an isothermal amplification technique targeting the gag re-

gion that has an end point electrochemiluminescence detection

step. The Seimans Versant assay (version 3.0) is a nucleic acid

hybridization method that depends on signal amplification per-

formed in a 96-well format on the 440 bDNA analyzer. Com-

parative evaluations of these assays have shown that they are

highly correlated, in addition to being sensitive and specific

[49].

Increasingly, the trend in the field and in resource-poor set-

tings is to move toward real-time technology options that are

faster and have higher throughputs, larger dynamic ranges, and



S18 • JID 2010:201 (Suppl 1) • Stevens et al

Table 1. Summary of Nucleic Acid Testing Assays

Variable

bioMérieux Siemens

NucliSENS HIV-1QT
NucliSENS EasyQ HIV-1

(version 1.1)
VERSANT HIV-1 Quantiplex

(version 3.0; bDNA)
VERSANT HIV RNA
(version 1.0; kPCR)

Source(s) [18 –20] [22, 23] (for version 1; no source
for version 2)

[24] [25, 26]

Assay type NASBA; isothermal amplification;
electro chemiluminescence de-
tection; manual extraction,
NucliSENS extractor, or Nucli-
sens miniMAG

NASBA; real-time detection; molec-
ular beacons; Nuclisens
miniMAG; Nuclisens EasyMag

bDNA; sandwich nucleic acid hy-
bridization method; signal
amplification

Real-time PCR

Linear range, RNA
copies/mL

51–5 million 100–3 million 50–500,000 31–11 million

Specimen type Plasma, serum, DBS, any body
fluid, EDTA, citrate, heparin

Plasma, serum, DBS, any body
fluid

Plasma, EDTA, ACD Plasma, serum, DBS, EDTA

Specimen volume, mL 200–1000 200–1000 1000 500

Area of genome
targeted

Gag; target amplification Gag; signal amplification Pol; target amplification Pol; target amplification

Controls 3 Internal calibrators (synthetic
RNAs): Qa (high), Qb (medium)
and, Qc (low); positive, negative
controls not supplied with kits
and left to lab decision

1 Internal calibrator; no external
controls provided and inclusion
reduces throughput

6–9 Standards and 3 controls (neg-
ative, low, high) per plate

Positive (high, low); negative

Subtype reactivity Group M; not suitable for G, O
[18];

Group M; not suitable for O, G Group M Group M (clades A–H, CRF-AE and
AG); group O

Technical skill High High-Med, if automated High-Med, if automated High

Lab set-up (PCR spec-
ifications required
for all) and major
equipment

Extractor (or centrifuge, vortex);
waterbath/heating block; biohaz-
ard hoods; reader

Extractor; analyzer; biohazard
hoods; centrifuge

Siemens 340 or 440 molecular sys-
tem; biohazard hoods, refrigerated
centrifuge, heating block, water-

bath, vacuum system

Main system VERSANT kPCR mo-
lecular system

Throughput, no. of
samples per run

20–30 [46] miniMAG (12 per run); EasyMAG
(24); EasyQ analyzer (48 per run )
[46]

12–168 89 (+7 calibrators and controls)

Time to result, h 3.5 2.5 (for 24 samples) 22 5–6 h

Cost per test (kit
only), US$a

40–100 40–60 125 30–75

FDA approval Yes No Yes No

CE marking Yes Yes Yes Yes

Advantages Isothermal; many sample types Closed system; rapid; automated;
medium technical skill

High throughput; Versant 440 sys-
tem fully automated; no special
laboratory set-up required; no
separate extraction or amplifica-
tion areas

Real time; can be fully automated;
amerase to prevent
contamination

Disadvantages Contamination risk; postamplifica-
tion steps required; dedicated
space and equipment; high tech-
nical skill; cost; technical support
required

Dedicated space and equipment;
cost; technical support required;
not FDA approved; significant
risk of contamination in high-vol-
ume laboratories

Dedicated space and equipment;
technical support required

Dedicated space and equipment;
high technical skill; cost; techni-
cal support required

NOTE. Data in tables have been generated from the literature, in the absence of consultation with manufacturers. ACD, acid citrate dextrose; COBAS,
comprehensive bioanalytical system; DBS, dried blood spot; FDA, Food and Drug Administration; kPCR, kinetic polymerase chain reaction; LTR, long terminal
repeat; NASBA, nucleic acid sequence–based amplification; PCR, polymerase chain reaction; RT-PCR, reverse-transcriptase PCR.

fully automated extraction steps. Examples include the Roche

Taqman assay (versions 1 and 2) [27, 54], NucliSENS EasyQ

(versions 1.2 and 2) [21, 55], the Abbott RealTime HIV-1 assay

(Abbott Molecular) [32, 41], and very recently, the K-PCR assay

(Siemens). The latter assay is relatively new, with 2 peer-re-

viewed publications [25, 26] at the time of manuscript prep-

aration. The Roche Taqman and Abbott RealTime assays are

the only real-time assays with Food and Drug Administration

approval. The Roche Taqman assay can be conducted on either

the COBAS Taqman 48 or 96 format analyzers and can be

automated through the COBAS Ampliprep analyzer. This is a

real-time, fluorescent assay format using dual hydrolysis probes

that are based on the 5′ exonuclease activity of Taq polymerase.

The Roche Taqman assay (version 2) was launched in 2009

[37]. The NucliSENS assay is a nucleic acid sequence–based

amplification methodology using a molecular beacon detection

format that can be semi-automated with use of the manual

NucliSENS miniMag extraction methodology [22] or auto-

mated using the EasyMag analyzer [55]. More recently, the

Abbott RealTime HIV-1 assay was released and can be auto-

mated using 2 instruments: the m2000sp for sample prepara-

tion (largely replacing the m1000) and the m2000rt for real-

time amplification and detection. The Abbott RealTime HIV-1

assay, using HIV-1 primer and probe sequences that are targeted
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Table 1. (Continued.)

Roche Molecular Systems Abbott Biocentric

Amplicor HIV-1 Monitor (version 1.5) COBAS Taqman RealTime HIV-1 Biocentric Generic viral load

[24] [27–31] [32–34] [42–44]

RT-PCR; end point PCR; Microwell Plate
Manual and COBAS Amplicor [24] or
COBAS Ampliprep/Amplicor [35, 36]

RT-PCR; real-time PCR; dual-labeled hydroly-
sis type probes; Armored RNA internal
quantitation standard (HIV QS); 2 versions
(version 1 and 2) [37]

RT-PCR; real-time PCR; partially ds real-time
probe with fluorescent label; armored
RNA internal standard; automated via
m2000rt; automated extraction (Abbott
m2000sp, previously m1000 [38]); Abbott
LCx assay largely discontinued

Real-time PCR; RT-PCR

400–750,000 (standard); 50–100,000 (ultra-
sensitive) [36]

40–10 million for version 1; 20–10 million for
version 2 [39]

40–10 million 300–50 million

Plasma, DBS Plasma, DBS Plasma, DBS, EDTA, ACD Plasma, DBS [45]

200 or 500 1000 200–1000 200–500

Gag; target amplification Gag; target amplification; LTR and gag
regions targeted in version 2

Pol integrase region [24]; target amplification LTR; target amplification

High positive; low positive; negative; internal
control

High positive; low positive; negative; internal
control standard

Low positive; negative; internal control One internal calibrator; no external con-
trols provided

Group M; not suitable for O [40] HIV-1; group M; group O included for ver-
sion 2.0

All [34]; better for CRF02-AG recombinants
[41]

Group M; not suitable for O, G

High-Med, if automated High-Med, if automated High-Med, if automated High-Med

For manual, thermocycler, ELISA reader,
washer, and microcentrifuge; for auto-
mated, COBAS Ampliprep and COBAS
Amplicor analyzers

COBAS Taqman with or without COBAS
Ampliprep 48 or 96 system; biohazard
hoods; centrifuges; 168/8 h day per con-
tinuous loading

Automated extraction and prep (m2000sp);
amplification and detection (m2000rt); bar
code reader for primary tubes; centrifuge;
biohazard hood

Thermocycler; biohazard hoods;
centrifuge

12–48 (9–21 per run) 48 or 96 48 (includes 3 controls) 1–96 samples/run

7 5 [24] 5 [24] 4 h

20–100 30–100 20–40 14

Yes Yes (for version 1) Yes No

Yes Yes (for version 1) Yes Yes

Amperase to prevent contamination; Can
fully automated; medium throughput; me-
dium to high technical skill

Amperase to prevent contamination; single
tube; fully automated; Medium technical
skill; wide dynamic range; Ampliprep can
be docked to Taqman for automated sam-
ple transfer [47]; single room required;
Amplilink software for interfacing

Closed system post-PCR [41]; wide dynamic
range [33]; can be fully automated

Close system; rapid; automated; high
technical skill; open system; difficult
to quality control all components

Limited linear dynamic range; 2 versions;
dedicated space and equipment; cost;
technical support required

Dedicated space and equipment; may have
docking of COBAS Ampliprep/Taqman al-
lowing 1 room; cost; technical support
required

Dedicated space and equipment; cost; tech-
nical support required

Dedicated space and equipment; high
technical skill; capital equipment ex-
pensive; technical support required;
not FDA approved

a Costs are variable, generally dependent on the region, volume of samples, and negotiation with suppliers.

to the integrase region of the pol gene, has been reported by

some investigators to be more sensitive than Roche COBAS

Taqman (version 1 and 2) and to correlate well with Roche

COBAS Monitor (version 1.5) [37, 38], and other researchers

have reported good concordance among all 3 assays [47]. A

real-time PCR assay called the Biocentric generic viral load assay

is available from Biocentric that can be placed on a variety of

real-time analyzers and is referred to as an open system. Con-

cerns have been expressed with respect to the difficulties that

may arise with quality assuring this assay approach across

centers

Other direct approaches have been to measure the proviral

DNA load in peripheral blood mononuclear cells [56, 57] or

selected CD4 cells [57], which has shown to have some cor-

relation with monitoring efficacy of treatment in individuals

with undetectable viral RNA loads. No commercial assays are

currently available for measuring proviral DNA load. The lit-

erature abounds with other in-house assay options, usually real-

time assays developed in many different countries in an attempt

to reduce costs. These have been described as targeting different

regions of the HIV genome with a host of primer and probe

designs using different technology platforms [58, 59–61]. A full

detailed discussion of these different approaches is beyond the

scope of this manuscript, but these approaches currently have

limited capacity for expansion because of the high costs of

equipment and relative sophistication of assays or lack of avail-

ability in a well-validated and rigorously quality-controlled kit

form.
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NONNUCLEIC ACID TESTING APPROACHES

The cost of capital equipment to conduct nucleic acid testing,

together with the high costs of reagents and consumables (US

$15–$100 per test, depending on the region) [15, 62], prohibits

implementation in many resource-poor environments. In the

absence of the sample volumes required to facilitate negotiation

of instrument leasing and reduction of costs, alternatives need

to be sought.

Indirect measures of viral load that require less equipment

and skill have thus been evaluated for resource-poor settings

[62] and include the ultrasensitive, heat-denatured p24 antigen

quantification assay (Perkin Elmer Life Sciences) [63], which

is no longer being developed for viral load monitoring, and

the ExaVir Load (Cavidi AB) reverse-transcriptase assay [64–

66]. More recently, other approaches have included the eval-

uation of flow cytometry–based markers of activation, such as

the quantification of bright CD38 expression on CD8 cells [67,

68]. These have been advocated as screening tools facilitating

a reduction in the number of viral load assays that need to be

performed. Assays are summarized in more detail in Table 2.

REVERSE TRANSCRIPTASE ACTIVITY ASSAY

The measurement of reverse transcriptase activity as an alter-

native to RNA quantification is favored as an approach because

of the lack of reliance on subtype sequence [64, 74, 75] and

the relative lack of requirement for sophisticated laboratory

facilities and scientific expertise, compared with nucleic acid–

based technologies. The ExaVir Load assay measures the activity

of virus-encoded, reverse transcriptase, which is packaged to-

gether with the viral RNA in the HIV particle, in an enzyme-

linked immunoassay format. Initial versions of the assay were

compromised by the susceptibility of the enzyme to inhibitory

antibodies and other interfering molecules [76]. In subsequent

versions, virions are first separated from plasma by passage

through a gel column that removes interfering substances; then,

the DNA produced as a result of the reverse transcriptase ac-

tivity is measured. Work in South Africa and Australia dem-

onstrated good correlation between earlier versions of the assay

and the Roche RNA assay in longitudinal follow-up of patients

receiving ART [64, 65]. The current assay, ExaVir Load (version

3), is more sensitive than version 2 and has a lower limit of

∼200 copies/mL. In a recent study, 95% of samples with an

HIV RNA level 1400 copies/mL were detectable with ExaVir

Load, and there was similar hands-on time (12 min/sample vs

11.4 min/sample), compared with the Roche COBAS Amplicor

Monitor (version 1.5) [77].

ULTRASENSITIVE, HEAT-DENATURED P24
ANTIGEN QUANTIFICATION ASSAY

Numerous reports in the literature describe the performance

of the quantitative p24 antigen assay (Perkin Elmer/NEN HIV-

1 ELISA p24 antigen kit) with a heat denaturation step for

dissociating immune complexes for monitoring virological re-

sponse [78–80]. Schupbach et al [81] further improved assay

sensitivity by using an external buffer (not provided by the

manufacturer) that improves dissociation. The assay is now

used widely as an alternative to nucleic acid testing for diagnosis

of HIV infection during early infancy; this use appears to be

the focus of the supplier [82, 83]. Several publications support

the use of the assay for monitoring ART [63, 65, 79, 84–86];

however, some describe less successful outcomes [87], and the

assay is no longer being developed for viral load monitoring.

The sensitivity of the assay is reported to be 10,000–30,000

RNA copies/mL, which is not adequate for facilitation of treat-

ment changes in any setting.

FLOW CYTOMETRIC–BASED ASSAYS

Centralized testing for CD4 cell count has been established in

many resource-limited settings; thus, a significant amount of

interest has been expressed in developing a flow cytometric–

based direct or indirect marker of viral load. A few publications

cite the possibility of using measurements of the chronic ac-

tivation of CD8+ T cells with use of activation markers, such

as CD38 [67, 88] or the programmed death-1 molecule [88].

In a recent study in South Africa involving a cohort receiving

ART, the CD38 marker was added to the CD4 cell count assay

[67]. This was introduced at baseline before the start of ART,

and changes in CD38+ mean fluorescent intensity on CD8+ T

cells were regularly assessed during follow-up and compared

with viral load values. Results revealed a gradual decrease in

CD38 mean fluorescent intensity with time in patients who

responded to treatment and developed undetectable viral loads.

Increases in CD38 mean fluorescent intensity were associated

with or preceded an increase in viral load, and this approach

may potentially be used to reduce the number of viral load

tests conducted after further standardization and investigation.

PROPOSED VIRAL LOAD TESTING ALGORITHM
FOR RESOURCE-POOR ENVIRONMENTS

In high-income countries, it is recommended that viral load

testing be conducted at baseline; 2–8 weeks after initiation of

ART, to assess early virological response; and then every 3–4

months [5]. In general, treatment is considered to be successful

if viral load decreases by 11 log by 8 weeks and is undetectable

at 16–24 weeks. This algorithm may need to be revised in

resource-poor countries, with viral load testing conducted less
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frequently or with higher thresholds being used to determine

virological failure necessitating therapy switch. Nucleic acid

technologies should be limited to those laboratories where there

is appropriate space and separation of the various steps in the

PCR process, to limit contamination. Many larger reference

laboratories may satisfactorily meet these criteria. Nonnucleic

acid technologies, such as the ExaVir Load assay, may be ap-

propriate for district-level laboratories (eg, where enzyme-

linked immunosorbent assay methods are already being used)

and in smaller reference laboratories where there is no separate

PCR suite in the laboratory; technology changes now allow

PCR to be performed in 1 room for many assays.

SAMPLE COLLECTION AND TRANSPORTATION
STRATEGIES

Sample collection and transportation remain huge stumbling

blocks for the operational implementation of nucleic acid viral

load testing assays in resource-limited settings. Most assays re-

quire centrifugation of samples on site and shipment of plasma

within 24 h at room temperature or on dry ice if a longer delay

is anticipated. Courier networks are often not available or

poorly developed in these countries. Access to facilities pro-

ducing dry ice is limited, and temperatures en route regularly

exceed 40�C. To address these issues, alternative means of trans-

porting samples have been evaluated, including use of (1)

plasma preparation tubes that allow overnight ambient trans-

portation without the need for aliquoting of samples [89], (2)

dried fluid spots (either plasma or whole blood), and (3) col-

lection devices, such as the SampleTanker (Research Think

Tank). The use of Vacutainer plasma preparation tubes (EDTA

anticoagulant) may be a solution for certain scenarios in which

phlebotomy skills are available and clinic access to centrifu-

gation is feasible. However, concerns have been expressed with

respect to the ongoing biohazard risk associated with trans-

porting tubes and because several studies have reported elevated

levels of viral loads at lower limits of dynamic range, compared

with conventional EDTA collection tubes [89].

Dried fluid spots have been evaluated for a number of HIV-

related diagnostic and monitoring assays, including diagnostic

HIV serologic testing, p24 antigen quantitation [90], HIV DNA

PCR for early infant diagnosis [91, 92], and more recently, viral

load determination [93] and resistance genotyping [94–96].

The use of dried blood spots for early infant diagnosis of HIV

infection is already widely practiced in many resource-poor

settings. Viral load monitoring with use of dried plasma spots

and dried blood spots has had only limited evaluation, largely

for the Roche Monitor assay (version 1.5) [97, 98] and for the

bioMérieux NucliSENS HIV-1 assays [93] . The study by Bram-

billa et al [97] (at 11 laboratory centers) revealed a lower limit

of HIV RNA load of ∼4000 copies/mL, greater sensitivity for

the Roche Monitor assay, and stability of results for up to 1

year when samples were stored at �70�C. A similar study eval-

uating the NucliSENS EasyQ/EasyMAG combination that com-

pared dried plasma spots and dried blood spots with liquid

plasma revealed comparable results down to viral loads of 3.6

log copies/mL [93]. In addition, this study suggested that sam-

ples were stable without cold storage for up to 3–6 weeks. Dried

blood spot samples are easier to collect in the field than are

dried plasma spots and provide a feasible option for improving

access to HIV load monitoring in resource-limited settings. The

sensitivity is adequate if therapy switch is only initiated above

this level. Dried blood spots and dried plasma spots have also

been analyzed for HIV genotype analysis and demonstrated

high concordance with predicate assays [96]. Standardized ex-

traction protocols need to be developed and published for large-

scale implementation of viral load assays using dried blood

spots.

APPROPRIATE ASSAY SELECTION

Assistance with making informed decisions with respect to se-

lection of appropriate technology for monitoring of ART pro-

grams is essential in resource-poor settings. The wide array of

technologies available for viral load monitoring in particular

pose significant dilemmas for laboratories that are initiating

such programs. The steps involved in introducing a viral load

technology in a laboratory in a resource-limited setting are not

dissimilar to those involving establishment of validated CD4

cell count testing [99].

Comprehensive cost analysis is essential and needs to factor

in the cost of reagents and consumables, staff time used to

conduct the assay, cost of instrument maintenance, cost of

running internal controls and external quality assurance, costs

associated with returning the results to the clinician (eg, by fax

or courier), sample transportation, and any additional fixed

overhead costs. A tiered laboratory approach is probably the

most practical for rapid implementation and affordability, with

primary centers preparing and referring more specialized test-

ing to secondary or tertiary testing facilities. At the primary

health care level, a point-of-care viral load test remains the first

prize for those conducting research and for development in the

HIV diagnostics field [100]. This would facilitate immediate

management decisions and remove all the difficulties related

to transportation and reporting of results to clinicians. Several

investigators are pursuing the rapid viral load testing strategy

using formats, such as various dipstick [101], molecular zipper

[102], oligonucleotides on gold nanoparticles [103], and chip

approaches. Secondary care centers may develop the capacity

to perform less sophisticated testing, using simple systems, such

as reverse transcriptase activity assays or simple automated nu-

cleic acid testing systems. If no separate PCR suite is available,

vigilance is required at these laboratories to ensure that con-

tamination is not occurring in PCR-based assays. Tertiary ref-
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erence laboratories generally have the capability to conduct

nucleic acid amplification techniques for viral load testing.

Constant molecular surveillance is needed in a region to ensure

that the viral load assay selected (if nucleic acid based) remains

relevant in terms of detecting and quantifying HIV subtypes

in the particular patient population being monitored.
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